CONJUNTO DOS NÚMEROS NATURAIS
Pertencem ao conjunto dos naturais os números inteiros positivos incluindo o zero. Representado pela letra N maiúscula. Os elementos dos conjuntos devem estar sempre entre chaves.
N = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, ... }
- Quando for representar o Conjunto dos Naturais não – nulos (excluindo o zero) devemos colocar * ao lado do N.
Representado assim:
N* = {1, 2,3 ,4 ,5 ,6 ,7 ,8 ,9 ,10 ,11 ,12, ... }
A reticência indica que sempre é possível acrescentar mais um elemento.
N = {0, 1, 2, 3, 4, 5, 6, ...} ou N = {0, 1, 2, 3, 4, 5, 6, 7, ... }
Qualquer que seja o elemento de N, ele sempre tem um sucessor. Também falamos em antecessor de um número.
• 6 é o sucessor de 5.
• 7 é o sucessor de 6.
• 19 é antecessor de 20.
• 47 é o antecessor de 48.
Como todo número natural tem um sucessor, dizemos que o conjunto N é infinito.
Quando um conjunto é finito?
O conjunto dos números naturais maiores que 5 é infinito: {6, 7, 8, 9, ...}
Já o conjunto dos números naturais menores que 5 é finito: {0, 1, 2, 3, 4}
Veja mais alguns exemplos de conjuntos finitos.
• O conjunto dos alunos da classe.
• O conjunto dos professores da escola.
• O conjunto das pessoas que formam a população brasileira.
N = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, ... }
- Quando for representar o Conjunto dos Naturais não – nulos (excluindo o zero) devemos colocar * ao lado do N.
Representado assim:
N* = {1, 2,3 ,4 ,5 ,6 ,7 ,8 ,9 ,10 ,11 ,12, ... }
A reticência indica que sempre é possível acrescentar mais um elemento.
N = {0, 1, 2, 3, 4, 5, 6, ...} ou N = {0, 1, 2, 3, 4, 5, 6, 7, ... }
Qualquer que seja o elemento de N, ele sempre tem um sucessor. Também falamos em antecessor de um número.
• 6 é o sucessor de 5.
• 7 é o sucessor de 6.
• 19 é antecessor de 20.
• 47 é o antecessor de 48.
Como todo número natural tem um sucessor, dizemos que o conjunto N é infinito.
Quando um conjunto é finito?
O conjunto dos números naturais maiores que 5 é infinito: {6, 7, 8, 9, ...}
Já o conjunto dos números naturais menores que 5 é finito: {0, 1, 2, 3, 4}
Veja mais alguns exemplos de conjuntos finitos.
• O conjunto das pessoas que formam a população brasileira.
O conjunto dos números inteiro
Interseção do conjunto dos naturais e dos inteiros.
Pertencem ao conjunto dos números inteiros os números negativos, os números positivos e o zero. Fazendo uma comparação entre os números naturais e os inteiros percebemos que o conjunto dos naturais está contido no conjunto dos inteiros.
N = { 0,1,2,3,4,5,6, ... }
![](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_sSzSCJ5xZp-iUux0vt_OVREnXN0CP1NsrmlPBnSvFy3xjY9zxL5Iwl1s7MMJAljZskKltrR5e3FCpmG_h6KAaQRAlQwvEaQGgxA8zZ87lvsgA=s0-d)
Z = { ... , -3,-2,-1,0,1,2,3,4, ... }
N
Z
O conjunto dos números inteiros é representado pela letra Z maiúscula. Os números positivos são representados com o sinal de (+) positivo na frente ou com sinal nenhum (+2 ou 2), já os números negativos são representados com o sinal de negativo (-) na sua frente (-2).
►Os números inteiros são encontrados com freqüência em nosso cotidiano, por exemplo:
♦ Exemplo 1:
![](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_tWqCJD8Aic1LHSJNsmDzanWBWGc36At5sT-EZK1TG7L-Xc3TLiHQTz_Rk6wLR86pM6oi81OiAqcruJei4EF2YFl_q3_nOrEFCQlBtXeQa8OqQ_GA=s0-d)
Um termômetro em certa cidade que marcou 10°C acima de zero durante o dia, à noite e na manhã seguinte o termômetro passou a marcar 3°C abaixo de zero. Qual a relação dessas temperaturas com os números inteiros?
Quando falamos acima de zero, estamos nos referindo aos números positivos e quando falamos dos números abaixo de zero estamos referindo aos números negativos.
+10° C ------------- 10° C acima de zero
- 3° C --------------- 3° C abaixo de zero
♦ Exemplo 2:
Vamos imaginar agora que uma pessoa tem R$500,00 depositados num banco e faça sucessivas retiradas:
• dos R$500,00 retira R$200,00 e fica com R$300,00
• dos R$300,00 retira R$200,00 e fica com R$100,00
• dos R$100,00 retira R$200,00 e fica devendo R$ 100,00 A última retirada fez com que a pessoa ficasse devendo dinheiro ao banco. Assim:
Dever R$100,00 significa ter R$100,00 menos que zero. Essa dívida pode ser representada por – R$100,00.
►Oposto de um número inteiro![](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_vbBJ_j0YyWNVKnqX2b5oEUTbwHD8SSQDOZjMfmJ90VmxHK5g3f1bKoRA5rBXilkw4kZkbFkrkPgwHvHQBXmb39ylQ4VNB73Xm5ZVsFajJ86g=s0-d)
O oposto de um número positivo é um número negativo simétrico. Por exemplo: o oposto de +2 é -2; o oposto de -3 é +3.
►O conjunto dos números inteiros possui alguns subconjuntos:
- Inteiros não – nulos
São os números inteiros, menos o zero.
Na sua representação devemos colocar * ao lado do Z.
Z* = {..., -3, -2, -1, 1, 2, 3,...}
- Inteiros não positivos
São os números negativos incluindo o zero.
Na sua representação deve ser colocado - ao lado do Z.
Z_ = {..., -3, -2, -1, 0}
- Inteiros não positivos e não – nulos São os números inteiros do conjunto do Z_ excluindo o zero.
Na sua representação devemos colocar o _ e o * ao lado do Z.
Z*_ = {..., -3, -2, -1}
- Inteiros não negativos
São os números positivos incluindo o zero.
Na sua representação devemos colocar o + ao lado do Z.
Z + = { 0,1 ,2 ,3, 4,...}
O Conjunto Z + é igual ao Conjunto dos N
- Inteiros não negativos e não - nulos
São os números do conjunto Z+, excluindo o zero.
Na sua representação devemos colocar o + e o * ao lado do Z.
Z* + = {1, 2, 3, 4,...} O Conjunto Z* + é igual ao Conjunto N*
N = { 0,1,2,3,4,5,6, ... }
Z = { ... , -3,-2,-1,0,1,2,3,4, ... }
N
O conjunto dos números inteiros é representado pela letra Z maiúscula. Os números positivos são representados com o sinal de (+) positivo na frente ou com sinal nenhum (+2 ou 2), já os números negativos são representados com o sinal de negativo (-) na sua frente (-2).
►Os números inteiros são encontrados com freqüência em nosso cotidiano, por exemplo:
♦ Exemplo 1:
Um termômetro em certa cidade que marcou 10°C acima de zero durante o dia, à noite e na manhã seguinte o termômetro passou a marcar 3°C abaixo de zero. Qual a relação dessas temperaturas com os números inteiros?
Quando falamos acima de zero, estamos nos referindo aos números positivos e quando falamos dos números abaixo de zero estamos referindo aos números negativos.
+10° C ------------- 10° C acima de zero
- 3° C --------------- 3° C abaixo de zero
♦ Exemplo 2:
Vamos imaginar agora que uma pessoa tem R$500,00 depositados num banco e faça sucessivas retiradas:
• dos R$500,00 retira R$200,00 e fica com R$300,00
• dos R$300,00 retira R$200,00 e fica com R$100,00
• dos R$100,00 retira R$200,00 e fica devendo R$ 100,00 A última retirada fez com que a pessoa ficasse devendo dinheiro ao banco. Assim:
Dever R$100,00 significa ter R$100,00 menos que zero. Essa dívida pode ser representada por – R$100,00.
►Oposto de um número inteiro
O oposto de um número positivo é um número negativo simétrico. Por exemplo: o oposto de +2 é -2; o oposto de -3 é +3.
►O conjunto dos números inteiros possui alguns subconjuntos:
- Inteiros não – nulos
São os números inteiros, menos o zero.
Na sua representação devemos colocar * ao lado do Z.
Z* = {..., -3, -2, -1, 1, 2, 3,...}
- Inteiros não positivos
São os números negativos incluindo o zero.
Na sua representação deve ser colocado - ao lado do Z.
Z_ = {..., -3, -2, -1, 0}
- Inteiros não positivos e não – nulos São os números inteiros do conjunto do Z_ excluindo o zero.
Na sua representação devemos colocar o _ e o * ao lado do Z.
Z*_ = {..., -3, -2, -1}
- Inteiros não negativos
São os números positivos incluindo o zero.
Na sua representação devemos colocar o + ao lado do Z.
Z + = { 0,1 ,2 ,3, 4,...}
O Conjunto Z + é igual ao Conjunto dos N
- Inteiros não negativos e não - nulos
São os números do conjunto Z+, excluindo o zero.
Na sua representação devemos colocar o + e o * ao lado do Z.
Z* + = {1, 2, 3, 4,...} O Conjunto Z* + é igual ao Conjunto N*
O conjunto dos números racionais
Interseção dos conjuntos: Naturais, Inteiros e Racionais.
Os números decimais são aqueles números que podem ser escritos na forma de fração.
Podemos escrevê-los de algumas formas diferentes:
Por exemplo:
♦ Em forma de fração ordinária:
;
;
e todos os seus opostos.
Esses números tem a forma
com a , b
Z e b ≠ 0.
♦ Números decimais com finitas ordens decimais ou extensão finita:
Esses números têm a forma
com a , b
Z e b ≠ 0.
♦ Número decimal com infinitas ordens decimais ou de extensão infinita periódica. São dízimas periódicas simples ou compostas:
As dízimas periódicas de expansão infinita, que podem ser escritas na forma
: com a, b
Z e b ≠ 0.
► O conjunto dos números racionais é representado pela letra Q maiúscula.
Q = {x =
, com a Z e b Z*} ![](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_sBPeW4nSy3Vo5OnDwD9V8-ZRhtDJ1N7pSvbXHycmpKJbncArPmIrqPzvprmNfOT5pqCG0YU_Ze7G2GWUiJNmf4LXUA4jciHr2KGCEgPpcWRUgYimyh=s0-d)
►Outros subconjuntos de Q: Além de N e Z, existem outros subconjuntos de Q.
Q* ---------- É o conjunto dos números racionais diferentes de zero.
Q+ ---------- É o conjunto dos números racionais positivos e o zero.
Q- ----------- É o conjunto dos números racionais negativos e o zero.
Q*+ ---------- É o conjunto dos números racionais positivos.
Q*- ----------- É o conjunto dos números racionais negativos.
Q+ ---------- É o conjunto dos números racionais positivos e o zero.
Q- ----------- É o conjunto dos números racionais negativos e o zero.
Q*+ ---------- É o conjunto dos números racionais positivos.
Q*- ----------- É o conjunto dos números racionais negativos.
► Representação Geométrica
Entre dois números racionais existem infinitos outros números racionais.
CONJUNTO DOS NÚMEROS IRRACIONAIS
1
1 + 1 = 2
2 + 1 = 3
3 + 2 = 5
5 + 3 = 8
8 + 5 = 13
13 + 8 = 21
21 + 13 = 34
34 + 21 = 55
Note que o próximo número da sequência é formado através da soma entre o atual e seu sucessor. Nessa sequência numérica, o número irracional surge da divisão entre um elemento e seu antecessor, a partir do número 21, veja:
5 : 3 = 1,666666.....
8 : 5 = 1,6
13 : 8 = 1,625
21 : 13 = 1,6153846153846153846153846153846 ...
34 : 21 = 1,6190476190476190476190476190476 ...
55: 34 = 1,6176470588235294117647058823529 ...
John Napier, matemático que intensificou os estudos sobre logaritmos, desenvolveu uma expressão que, ao ser calculada, resulta em um número irracional:
O número irracional não admite representação na forma de fração (contrário dos números racionais) e também quando escrito na forma de decimal é um número infinito e não periódico.
Exemplos
π = 3,141592653589793238462... no número pi, após a virgula, não existe formação de períodos, por isso é considerado irracional.
0,232355525447... é infinito e não é dízima periódica (pois os algarismos depois da vírgula não formam períodos), então é irracional.
2,102030569... não admite representação fracionária, pois não é dízima periódica.
Se utilizarmos uma calculadora veremos que √2 , √3 , √5, √7, entre outros, são valores que representam números irracionais.
A representação do conjunto dos irracionais é feita pela letra I maiúscula.
Exemplos
π = 3,141592653589793238462... no número pi, após a virgula, não existe formação de períodos, por isso é considerado irracional.
0,232355525447... é infinito e não é dízima periódica (pois os algarismos depois da vírgula não formam períodos), então é irracional.
2,102030569... não admite representação fracionária, pois não é dízima periódica.
Se utilizarmos uma calculadora veremos que √2 , √3 , √5, √7, entre outros, são valores que representam números irracionais.
A representação do conjunto dos irracionais é feita pela letra I maiúscula.
CONJUNTO DOS NÚMEROS REAIS
O conjunto dos números reais surge para designar a união do conjunto dos números racionais e o conjunto dos números irracionais. É importante lembrar que o conjunto dos números racionais é formado pelos seguintes conjuntos: Números Naturais e Números Inteiros. Vamos exemplificar os conjuntos que unidos formam os números reais. Veja:
Números Naturais (N): 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, ....
Números Inteiros (Z): ..., –8, –7, –6, –5, –4, –3, – 2, –1, 0, 1, 2, 3, 4, 5, 6, 7, 8, .....
Números Racionais (Q): 1/2, 3/4, 0,25, –5/4,
Números Irracionais (I): √2, √3, –√5, 1,32365498...., 3,141592....
Podemos concluir que o conjunto dos números reais é a união dos seguintes conjuntos:
N U Z U Q U I = R ou Q U I = R
Os números reais podem ser representados por qualquer número pertencente aos conjuntos da união acima. Essas designações de conjuntos numéricos existem no intuito de criar condições de resolução de equações e funções, as soluções devem ser dadas obedecendo aos padrões matemáticos e de acordo com a condição de existência da incógnita na expressão.
Números Naturais (N): 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, ....
Números Inteiros (Z): ..., –8, –7, –6, –5, –4, –3, – 2, –1, 0, 1, 2, 3, 4, 5, 6, 7, 8, .....
Números Racionais (Q): 1/2, 3/4, 0,25, –5/4,
Números Irracionais (I): √2, √3, –√5, 1,32365498...., 3,141592....
Podemos concluir que o conjunto dos números reais é a união dos seguintes conjuntos:
N U Z U Q U I = R ou Q U I = R
Nenhum comentário:
Postar um comentário